Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • W‐Based Atomic Laminates an...
    Meshkian, Rahele; Dahlqvist, Martin; Lu, Jun; Wickman, Björn; Halim, Joseph; Thörnberg, Jimmy; Tao, Quanzheng; Li, Shixuan; Intikhab, Saad; Snyder, Joshua; Barsoum, Michel W.; Yildizhan, Melike; Palisaitis, Justinas; Hultman, Lars; Persson, Per O. Å.; Rosen, Johanna

    Advanced materials (Weinheim), May 24, 2018, Letnik: 30, Številka: 21
    Journal Article

    Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i‐MAX phases with in‐plane chemical order and a general chemistry (W2/3M21/3)2AC, where M2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two—with a monoclinic C2/c structure—are predicted to be stable: (W2/3Sc1/3)2AlC and (W2/3Y1/3)2AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W1.33C‐based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W‐based MXene establishes that the etching of i‐MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications. A new 2D material (MXene) based on W and C is developed through selective etching of the new parent atomic laminates (W2/3Sc1/3)2AlC and (W2/3Y1/3)2AlC. The latter i‐MAX phases are discovered through theoretical predictions combined with experimental verification. The W1.33C MXene displays vacancy ordering, and is shown to be a promising catalyst for the hydrogen evolution reaction.