Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Response of the North Ameri...
    Barron, John A.; Metcalfe, Sarah E.; Addison, Jason A.

    Paleoceanography, September 2012, Letnik: 27, Številka: 3
    Journal Article

    The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ∼8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ∼8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ∼7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ∼114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology. Key Points North American monsoon responded to changing Holocene Pacific tropical SSTs Holocene warming of Gulf SSTs coincided with cooling of the California Current Early Holocene enhanced summer precipitation west of the modern NAM region