Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Manipulating the assembly o...
    Baca, Alfred J; Roberts, M Joseph; Stenger-Smith, John; Baldwin, Lawrence

    Nanotechnology, 06/2018, Letnik: 29, Številka: 25
    Journal Article

    Soft nanoimprinted titanium dioxide (TiO2) substrates decorated with methylammonium lead halide perovskite (MAPbI3) crystals were fabricated by controlling the perovskite precursor concentration and volume during spin coat processing combined with the use of hydrophobic TiO2 templates. The patterned growth was demonstrated with different perovskite crystallization methods. We investigated and successfully demonstrated the controlled assembly of two MAPbI3 nanomaterials, one a nanocomposite formed between the perovskite and a hole conducting polymer poly(2,5-bis(N-methyl-N-hexylamino)phenylene vinylene) (BAMPPV), and a second formed from perovskite crystals using common solution based MAPbI3 growth methods (1-step and 2-step processing). Both types of MAPbI3 crystals were fabricated on hydrophobic TiO2 nanotemplates composed of nanowells or grating patterns. Patterned areas as large as 100 m × 100 m were achieved. We examined and characterized the substrates using atomic force microscopy, scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy. We present the optical properties (i.e. fluorescence and transmission) of soft nanoimprinted nanowells decorated with perovskites demonstrating the successful synthesis of MAPbI3 perovskite nanocrystals. As an example of their use, we demonstrate a two terminal device and show photocurrent response of a perovskite patterned micro-grating. Our method is a nondestructive approach to nanopatterning perovskites, and produces patterned arrays that maintain their photo-electric properties. The results presented herein suggests an attractive route to developing nanopatterned and small area perovskite substrates for applications in photovoltaics, x-ray sensing/detection, image sensor arrays, and others.