Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Growth of BiOBr/ZIF-67 Nano...
    Li, Xiaolong; Liu, Ting; Zhang, Yan; Cai, Jiafeng; He, Mengqiang; Li, Maoquan; Chen, Zhigang; Zhang, Lisha

    Advanced fiber materials (Online), 12/2022, Letnik: 4, Številka: 6
    Journal Article

    BiOBr-based nanocomposite photocatalysts are used for removing the organic pollutants, but their poor adsorption/photocatalytic performances and the low potential for recycling limit their application. To solve the issue, herein we report a large-area recyclable CFC/BiOBr/ZIF-67 filter-membrane-shaped photocatalyst prepared by in situ growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth (CFC). Fabrication process is based on hydrothermal synthesis of BiOBr nanosheets (diameter 0.5–1 μm) on carbon fiber cloth (as substrate material) and then a chemical bath route is used to grow ZIF-67 nanoparticles (diameter 300–600 nm) in situ on the surface of CFC/BiOBr. Resulted composite, CFC/BiOBr/ZIF-67, exhibits a high specific surface area (545.82 m 2  g −1 ) and a wide photoabsorption, accompanied by an absorption edge (~ 620 nm). In dark condition, CFC/BiOBr/ZIF-67 adsorbs bisphenol A (BPA) and orange 7 (AO7) within 60 min, respectively with 20.0% and 40.1% efficiency. This level of efficiencies are correspondingly 2.6 and 3.2 times more that of the bare CFC/BiOBr (7.6% for BPA and 12.4% for AO7). Under visible light irradiation, CFC/BiOBr/ZIF-67 can degrade 69.7% of BPA and 96.0% of AO7, in 120 min, which are, respectively, 1.3 and 1.8 times higher than the absorption efficiency of bare CFC/BiOBr (53.2% for BPA, 52.0% for AO7). When CFC/BiOBr/ZIF-67 is used as a filter membrane for photocatalytic removal of pollutants in flowing wastewater (AO7, rate: ~ 1.5 L h −1 ), 92.2% of AO7 can be decomposed after 10 filtering cycles. This study suggests CFC/BiOBr/ZIF-67 as a novel highly functional, recyclable and environmental friendly photo-driven membrane filter for purification and recovery of flowing surface waste waters. Graphical abstract