Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Contrasting types of micace...
    Howarth, Geoffrey H.; Giuliani, Andrea

    Lithos, June 2020, 2020-06-00, Letnik: 362-363
    Journal Article

    Diamondiferous rock types worldwide are broadly divided into kimberlite and lamproite, the latter of which have unique characteristics in different regions and include carbonate-rich varieties (formerly orangeites/Group II kimberlites). Diamondiferous rocks in West Africa are typically micaceous and share petrographic, mineralogical, and geochemical characteristics with both kimberlites and lamproites. To further constrain the classification and petrogenesis of diamondiferous rocks worldwide and their variability between different cratonic regions, in this study we combine detailed petrographic observations with olivine, phlogopite, and spinel chemistry for hypabyssal samples from the Jurassic Tongo dike (Sierra Leone) and the Neoproterozoic Weasua cluster (Liberia). The Tongo dike contains macrocrysts of olivine and phlogopite in a groundmass of olivine, abundant phlogopite, spinel, perovskite, and apatite with a base of calcite, dolomite, and lesser serpentine. The phlogopite is characterised by concurrent FeO and Al2O3 enrichment, which is typical of kimberlites and unlike lamproites. These features and the kimberlite-like spinel compositions allow us to classify the Tongo samples as micaceous kimberlites. The Weasua rocks comprise macrocrysts of olivine in a groundmass of olivine, phlogopite, diopside (zoned towards aegirine-rich rims), spinel, perovskite, and apatite with a base of serpentine and less common calcite. The composition of Weasua phlogopite trends to significant FeO enrichment and Al2O3 depletion, i.e. towards tetraferriphlogopite. The enrichment in mica, phlogopite chemistry and presence of magmatic diopside indicates that these rocks are olivine lamproites. The populations of olivine macrocrysts and microcrysts at Tongo and Weasua are similar and characterised by distinct core and rim zones. Two distinct olivine core populations are observed. 1) forsterite-rich (Fo > 90) olivine interpreted to reflect xenocrysts from typical mantle peridotites. Al-in-olivine thermometry suggests that these cores have P-T equilibration within diamond stability at Weasua and Tongo. 2) Al-, Ca- and Na- rich cores with P-T formation conditions extending beyond the mantle adiabat. These cores are interpreted to reflect metasomatic and thermal perturbation linked with the infiltration of kimberlite/lamproite melts in the deep lithosphere shortly before entrainment in the ascending magma. The olivine rims at Tongo and Weasua show limited variations in Fo contents at similar values of 88.9 ± 0.8 for Tongo and 89.6 ± 1.2 for Weasua, as well as similar minor and trace element concentrations. Thus, whereas the Tongo and Weasua rock types are classified as kimberlite and olivine lamproite, respectively, the olivine chemistry suggests a similar petrogenetic evolution. •Here we classify unusual transitional kimberlite-lamproites from West Africa.•Tongo rocks are micaceous transitional kimberlites.•Weasua rocks are diopside-bearing olivine lamproites.•West African diamondiferous rocks defy clear classification.•Olivine chemistry indicates similar petrogenesis both localities.