Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Zero-gap semiconductor to e...
    Lu, Y. F.; Kono, H.; Larkin, T. I.; Rost, A. W.; Takayama, T.; Boris, A. V.; Keimer, B.; Takagi, H.

    Nature communications, 02/2017, Letnik: 8, Številka: 1
    Journal Article

    Abstract The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron–hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta 2 NiSe 5 is a narrow-gap semiconductor with a small one-electron bandgap E G of <50 meV. Below T C =326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap E op ∼0.16 eV below T C comparable to the estimated exciton binding energy E B . Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the T C – E G phase diagram tuning E G via chemical and physical pressure. The dome-like behaviour around E G ∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta 2 NiSe 5 .