Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Distributing sulfidized nan...
    Xu, Jiang; Cao, Zhen; Wang, Yan; Zhang, Yilin; Gao, Xiaoyu; Ahmed, Mohammad Boshir; Zhang, Jing; Yang, Yi; Zhou, John L.; Lowry, Gregory V.

    Chemical engineering journal (Lausanne, Switzerland : 1996), 03/2019, Letnik: 359
    Journal Article

    Display omitted •A novel and simple approach is presented to uniformly distribute S-nZVI on biochar.•Phosphorus etching of biochar complexes Fe2+ before its reduction and sulfidation.•Greater reactive surface area of supported S-nZVI increases reactivity with FF.•Sulfur release from the particles was limited during the reaction. Aggregation of nZVI and sulfur-modified nZVI (S-nZVI) can lower its reactivity with contaminants in water. To overcome this limitation, we synthesized biochar-supported nZVI and S-nZVI using a phosphate pretreatment of the biochar (pBC) to uniformly distribute the nZVI and S-nZVI onto the biochar support. The participation of phosphorus groups in the synthesis, and the good distribution of S-nZVI on the pBC were confirmed by FTIR, SEM, XRD, and XPS. Pretreatment of the biochar led to smaller well-dispersed S-nZVI compared to S-nZVI supported on untreated biochar. This increased the surface area of the S-nZVI and the reaction rate with the antibiotic florfenicol (FF). The removal rate of FF by pBC-S-nZVI was 4.3 times higher than that by unsupported S-nZVI. Even though FF strongly adsorbed to the pBC support, FF was fully degraded based on the mass balance results. Surface area normalized reaction rate constants (kSA) for FF removal by S-nZVI, BC-S-nZVI, and pBC-S-nZVI were similar, suggesting that the enhanced reactivity is due to the greater dispersion of S-nZVI on the treated biochar. These results provide a simple pretreatment method for dispersing nZVI or S-nZVI onto biochar supports.