Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Chiral AIEgens – Chiral rec...
    Hu, Ming; Feng, Hai-Tao; Yuan, Ying-Xue; Zheng, Yan-Song; Tang, Ben Zhong

    Coordination chemistry reviews, 08/2020, Letnik: 416
    Journal Article

    Display omitted •Chiral AIE compounds are recently developed very rapidly.•Chiral AIEgens display excellent chiral recognition, ee analysis and CPL properties.•Review paper about preparation of chiral AIEgens and their applications is scarce. Due to immense potential in using as chemo/biosensors and solid emitters, aggregation-induced emission (AIE) phenomenon is attracting huge interest in scientific community. After endowed with chirality, the resultant chiral AIE luminogens (AIEgen), just like a tiger with added wings, can display more and stronger promising functionalities. Moreover, many classic luminophores can be transformed into AIEgens from notorious aggregation-caused quenching (ACQ) compounds as soon as they are attached with chiral groups. Compared with other chiral fluorescent receptors and chiral emitter, chiral AIEgens have displayed unique and outstanding advantages. Firstly, chiral AIEgen can differentiate two enantiomers of chiral analyte by 1.68 × 104 fold difference and get a chiral magnification up to 2.5 × 103 times due to aggregation. In addition, two enantiomers of up to 18 chiral carboxylic acids can be recognized just by using only one chiral AIEgen receptor and enantiomeric excess (ee) of chiral analytes at uM level can be measured. Furthermore, accurate ee analysis was carried out for the first time from fluorescence wavelength change rather than intensity change of the chiral AIEgen receptor. Therefore, the chiral AIEgens show unprecedentedly high selectivity, high sensitivity, high applicability, and high accuracy. Secondly, in the area of organic circularly polarized luminescence (CPL) materials, the CPL dissymmetry factor (glum) of chiral AIEgen can get to 1.42 that is near to the theoretical value of 2, making a breakthrough progress while the |glum| of previous organic luminophores is generally between 10−5 and 10−2. Furthermore, the highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) are constructed for the first time by chiral AIEgens. Thirdly, chiral AIEgens enable novel display technology under different lighting conditions to be possible. More importantly, due to AIE effect, AIEgens are very beneficial for disclosing the mechanism of chiral transfer and magnification between molecules, which is thought to be the key for evolution of homochirality in natural world and preparation of chiral materials with hierarchical structures. For the above reason, chiral AIEgens have been brought to extensive attention and a large number of research works about them are reported. To take an overall view on chiral AIEgens and facilitate the development of chiral AIEgens, it is necessary to make a full review on the chiral AIEgens. This review covers the following contents: (1) construction of chiral AIEgens including propeller-like chiral AIEgens, chiral AIEgens with optically pure groups, polymer chiral AIEgens and supramolecular chiral AIEgen system; (2) chiral recognition and ee determination of chiral carboxylic acids, chiral amines, α-amino acids, and chiral neutral molecules by chiral AIEgens; (3) performance of chiral AIEgens in circular dichroism (CD), CPL and CPOLEDs; (4) other versatile application researches related to chiral AIEgens.