Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Gain‐of‐function mutations ...
    Andolfo, Immacolata; Rosato, Barbara Eleni; Manna, Francesco; De Rosa, Gianluca; Marra, Roberta; Gambale, Antonella; Girelli, Domenico; Russo, Roberta; Iolascon, Achille

    American journal of hematology, February 2020, Letnik: 95, Številka: 2
    Journal Article

    Dehydrated hereditary stomatocytosis (DHS), or xerocytosis, is an autosomal dominant hemolytic anemia. Most patients with DHS carry mutations in the PIEZO1 gene encoding a mechanosensitive cation channel. We here demonstrate that patients with DHS have low levels of hepcidin and only a slight increase of ERFE, the erythroid negative regulator of hepcidin. We demonstrated that at the physiological level, PIEZO1 activation induced Ca2+ influx and suppression of HAMP expression in primary hepatocytes. In two hepatic cellular models expressing PIEZO1 WT and two PIEZO1 gain‐of‐function mutants (R2456H and R2488Q), we highlight altered expression of a few genes/proteins involved in iron metabolism. Mutant cells showed increased intracellular Ca2+ compared to WT, which was correlated to increased phosphorylation of ERK1/2, inhibition of the BMP‐SMADs pathway, and suppression of HAMP transcription. Moreover, the HuH7 cells, treated with PD0325901, a potent inhibitor of ERK1/2 phosphorylation, reduced the phosphorylation of ERK1/2 with the consequent increased phosphorylation of SMAD1/5/8, confirming the link between the two pathways. Another “proof of concept” for the mechanism that links PIEZO1 to HAMP regulation was obtained by mimicking PIEZO1 activation by cell Ca2+ overload, by the Ca2+ ionophore A23187. There was strong down‐regulation of HAMP gene expression after this Ca2+ overload. Finally, the inhibition of PIEZO1 by GsMTx4 leads to phenotype rescue. This is the first demonstration of a direct link between PIEZO1 and iron metabolism, which defines the channel as a new hepatic iron metabolism regulator and as a possible therapeutic target of iron overload in DHS and other iron‐loading anemias.