Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • The MyoRobot: A novel autom...
    Haug, M.; Reischl, B.; Prölß, G.; Pollmann, C.; Buckert, T.; Keidel, C.; Schürmann, S.; Hock, M.; Rupitsch, S.; Heckel, M.; Pöschel, T.; Scheibel, T.; Haynl, C.; Kiriaev, L.; Head, SI; Friedrich, O.

    Biosensors & bioelectronics, 04/2018, Letnik: 102
    Journal Article

    We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1µN, 0–10mN for the given sensor; Ca2+ range ~ 100nM–25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers. •An automated, high-precision biomechatronics system, the MyoRobot, was engineered.•It assesses single cell, multi-cellular, whole muscle and biopolymer biomechanics.•Sensitivity of the contractile Ca2+ ion biosensor is automatically assessed in 2min.•Extracellular matrix puts a brake on unloaded speed of shortening in fibre bundles.•Material parameters of spider silk and collagen fibres were assessed.