Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Replication and shedding of...
    Munster, Vincent J; Adney, Danielle R; van Doremalen, Neeltje; Brown, Vienna R; Miazgowicz, Kerri L; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A

    Scientific reports, 02/2016, Letnik: 6, Številka: 1
    Journal Article

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV.