Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Numerical simulation of the...
    Tsukiya, Tomonori; Nishinaka, Tomohiro

    Journal of artificial organs, 09/2023, Letnik: 26, Številka: 3
    Journal Article

    Extracorporeal centrifugal pumps are widely used in various forms of mechanical circulatory support, including extracorporeal membrane oxygenation and ventricular assist device. A durable centrifugal pump was developed by implementing a new hydrodynamic bearing design that prevents the impeller from touching to the casing wall and provides sufficient washout through the pump to prevent thrombus formation in the pump. The hydrodynamic bearings of the pump are composed of dual annular paths located on both sides of the impeller. Computational fluid dynamics analyses were performed on the flow field inside the pump to estimate the leakage flow through the gap and its impact on the pump efficiency and biocompatibility. The calculations were performed for motor speeds from 3000 to 5000 rpm and flow rates from 1.0 to 9.0 L/min. The leakage flow increased linearly with increasing pressure head of the pump, and the total leakage flow ranged from 2.0 to 27.3% of the total flow. The average wall shear stresses in the casing bottom ranged from 10.6 to 40.9 Pa. The leakage flow of the centrifugal pump with the hydrodynamically levitated impeller had a measurable impact on hydraulic energy losses while enhancing the washout flow to achieve good anti-thrombogenicity.