Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Stepwise Ligand-induced Sel...
    Chan, Miu Shan; Landig, Renate; Choi, Joonhee; Zhou, Hengyun; Liao, Xing; Lukin, Mikhail D; Park, Hongkun; Lo, Pik Kwan

    Nano letters, 03/2019, Letnik: 19, Številka: 3
    Journal Article

    Nanodiamond–gold nanoparticle (ND-AuNP) dimers constitute a potent tool for controlled thermal heating of biological systems on the nanoscale, by combining a local light-induced heat source with a sensitive local thermometer. Unfortunately, previous solution-based strategies to build ND-AuNP conjugates resulted in large nanoclusters or a broad population of multimers with limited separation efficiency. Here, we describe a new strategy to synthesize discrete ND-AuNP dimers via the synthesis of biotin-labeled DNA-AuNPs through thiol chemistry and its immobilization onto the magnetic bead (MB) surface, followed by reacting with streptavidin-labeled NDs. The dimers can be easily released from MB via a strand displacement reaction and separated magnetically. Our method is facile, convenient, and scalable, ensuring high-throughput formation of very stable dimer structures. This ligand-induced self-assembly approach enables the preparation of a wide variety of dimers of designated sizes and compositions, thus opening up the possibility that they can be deployed in many biological actuation and sensing applications.