Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Simultaneous inhibition of ...
    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T.; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K.; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    Biopolymers, July 2014, Letnik: 102, Številka: 4
    Journal Article

    ABSTRACT Protein–protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium‐regulated protein, plays a crucial role in the proliferation of melanoma cells through protein–protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight‐binding peptide, TRTK‐12. The helical conformation of the peptide was constrained by the substitution of α‐amino isobutyric acid—an amino acid having high helical propensity—in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell‐penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild‐type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein–protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein–protein interactions for de novo drug development. © 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 344–358, 2014.