Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • A finite element model of h...
    Wang, Shuai; Gao, Junzhe; Lai, Liangpeng; Zhang, Xiaojing; Gong, Xiaofeng; Li, Heng; Wu, Yong

    Clinical biomechanics (Bristol), 20/May , Letnik: 115
    Journal Article

    The majority of the ankle osteoarthritis cases are posttraumatic and affect younger patients with a longer projected life span. Hence, joint-preserving surgery, such as supramalleolar osteotomy becomes popular among young patients, especially those with asymmetric arthritis due to alignment deformities. However, there is a lack of biomechanical studies on postoperative evaluation of stress at ankle joints. We aimed to construct a verifiable finite element model of the human hindfoot, and to explore the effect of different osteotomy parameters on the treatment of varus ankle arthritis. The bones of the hindfoot are reconstructed using normal CT tomography data from healthy volunteers, while the cartilages and ligaments are determined from the literature. The finite element calculation results are compared with the weight-bearing CT (WBCT) data to validate the model. By setting different model parameters, such as the osteotomy height (L) and the osteotomy distraction distance (h), the effects of different surgical parameters on the contact stress of the ankle joint surface are compared. The alignment and the deformation of hindfoot bones as determined by the finite element analysis aligns closely with the data obtained from WBCT. The maximum contact stress of the ankle joint surface calculated by this model increases with the increase of the varus angle. The maximum contact stresses as a function of the L and h of the ankle joint surface are determined. The relationship between surgical parameters and stress at the ankle joint in our study could further help guiding the planning of the supramalleolar osteotomy according to the varus/valgus alignment of the patients. •Quantitative study of the stress concentration/peak position in supramalleolar osteotomy.•A nonlinear finite element hindfoot model with major ligaments and contacting properties.•The model is validated by comparing the simulation results to the weight-bearing CT data.