Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Using fluorodeoxyglucose po...
    Feng, Mary; Kong, Feng-Ming; Gross, Milton; Fernando, Shaneli; Hayman, James A; Ten Haken, Randall K

    International journal of radiation oncology, biology, physics, 03/2009, Letnik: 73, Številka: 4
    Journal Article

    To quantify changes in fluorodeoxyglucose (FDG)-avid tumor volume on positron emission tomography/computed tomography (PET/CT) during the course of radiation therapy and examine its potential use in adaptive radiotherapy for tumor dose escalation or normal tissue sparing in patients with non-small-cell lung cancer (NSCLC). As part of a pilot study, patients with Stage I-III NSCLC underwent FDG-PET/CT before radiotherapy (RT) and in mid-RT (after 40-50 Gy). Gross tumor volumes were contoured on CT and PET scans obtained before and during RT. Three-dimensional conformal RT plans were generated for each patient, first using only pretreatment CT scans. Mid-RT PET volumes were then used to design boost fields. Fourteen patients with FDG-avid tumors were assessed. Two patients had a complete metabolic response, and 2 patients had slightly increased FDG uptake in the adjacent lung tissue. Mid-RT PET scans were useful in the 10 remaining patients. Mean decreases in CT and PET tumor volumes were 26% (range, +15% to -75%) and 44% (range, +10% to -100%), respectively. Designing boosts based on mid-RT PET allowed for a meaningful dose escalation of 30-102 Gy (mean, 58 Gy) or a reduction in normal tissue complication probability (NTCP) of 0.4-3% (mean, 2%) in 5 of 6 patients with smaller yet residual tumor volumes. Tumor metabolic activity and volume can change significantly after 40-50 Gy of RT. Using mid-RT PET volumes, tumor dose can be significantly escalated or NTCP reduced. Clinical studies evaluating patient outcome after PET-based adaptive RT are ongoing.