Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Metallurgy, mechanistic mod...
    DebRoy, T.; Mukherjee, T.; Wei, H. L.; Elmer, J. W.; Milewski, J. O.

    Nature reviews. Materials, 01/2021, Letnik: 6, Številka: 1
    Journal Article

    Additive manufacturing enables the printing of metallic parts, such as customized implants for patients, durable single-crystal parts for use in harsh environments, and the printing of parts with site-specific chemical compositions and properties from 3D designs. However, the selection of alloys, printing processes and process variables results in an exceptional diversity of microstructures, properties and defects that affect the serviceability of the printed parts. Control of these attributes using the rich knowledge base of metallurgy remains a challenge because of the complexity of the printing process. Transforming 3D designs created in the virtual world into high-quality products in the physical world needs a new methodology not commonly used in traditional manufacturing. Rapidly developing powerful digital tools such as mechanistic models and machine learning, when combined with the knowledge base of metallurgy, have the potential to shape the future of metal printing. Starting from product design to process planning and process monitoring and control, these tools can help improve microstructure and properties, mitigate defects, automate part inspection and accelerate part qualification. Here, we examine advances in metal printing focusing on metallurgy, as well as the use of mechanistic models and machine learning and the role they play in the expansion of the additive manufacturing of metals.Several key industries routinely use metal printing to make complex parts that are difficult to produce by conventional manufacturing. Here, we show that a synergistic combination of metallurgy, mechanistic models and machine learning is driving the continued growth of metal printing.