Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Evolutionary mechanisms mod...
    Kyomen, Stella; Murillo-Rincón, Andrea P; Kaucká, Markéta

    Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 07/2023, Letnik: 378, Številka: 1880
    Journal Article

    Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.