Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Non-isothermal unified hard...
    YAO, Y. P; ZHOU, A. N

    Géotechnique, 12/2013, Letnik: 63, Številka: 15
    Journal Article

    A constitutive, non-isothermal unified hardening (UH) model is presented to interpret the thermo-elasto-plastic behaviours of normally consolidated and overconsolidated clays. Two yield surfaces are adopted in the proposed model: the current yield surface and the reference yield surface. A UH parameter (H) is developed to describe the evolution of the current yield surface, and the plastic volumetric strain is employed to quantify the hardening of the reference yield surface. The similarity ratio (R T ) between the current yield surface and the reference yield surface, which is a function of the temperature and the plastic volumetric strain, is developed to govern the volume change behaviour and the shear strength of soils with different stress histories and at varying temperatures. The performance of the proposed model is then discussed in five typical scenarios: isotropic heating and cooling, drained/undrained triaxial compression with constant temperatures, and heating under constant non-isotropic states (drained/undrained). The mechanisms for thermal contraction/swelling and thermal failure are interpreted within the framework of the proposed non-isothermal UH model. Finally, the proposed model is validated through test results in the literature: heating/cooling tests, temperature-controlled drained triaxial compressions, and temperature-controlled undrained triaxial compressions.