Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Robust Adaptive Neural Cont...
    Zhang, Guoqing; Li, Jiqiang; Jin, Xu; Liu, Cheng

    IEEE transactions on cybernetics, 12/2022, Letnik: 52, Številka: 12
    Journal Article

    This article presents a robust adaptive neural control algorithm for the wing-sail-assisted vehicle to track the desired waypoint-based route, where the event-triggered mechanism is with the multiport form. The main features of the proposed algorithm are three-fold: 1) the communication burden, in the channel from the sensor to the controller as well as the actuator, has been reduced for the merits of the multiport event-triggered approach. The feedback error signals and the control input will be updated only on the event-triggered time point; 2) for the wing-sail-assisted vehicle, the thrust force is provided by devices with the propeller and the sail. From this consideration, the proper sail force compensation is derived on the basis of information about the current heading angle and the wind direction. The corresponding control law can guarantee the energy-saving for the propeller; and 3) in the algorithm, the system uncertainties are remodeled by the neural-network approximator. Furthermore, by fusion of the robust neural damping and dynamic surface control (DSC) techniques, the corresponding gain-related adaptive law is developed to address constraints of the gain uncertainty and the environmental disturbances. Through the Lyapunov theorem, all signals of the closed-loop control system have been proved to be with the semiglobal uniform ultimate bounded (SGUUB) stability, including the triggered time point and the intermediate triggered interval. Finally, the numerical simulation and the practical experiment are illustrated to verify the effectiveness of the proposed strategy.