Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Rational Design of a Hierar...
    Won, Da Hye; Choi, Chang Hyuck; Chung, Jaehoon; Chung, Min Wook; Kim, Eun-Hee; Woo, Seong Ihl

    ChemSusChem, September 21, 2015, Letnik: 8, Številka: 18
    Journal Article

    Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.− intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi‐branched conifer‐like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h−1 cm−2) at −1.36 VRHE without any considerable catalytic degradation over 18 h of operation. Not exactly what it says on the tin: Rational design principles for tin electrodes to be used in selective CO2 reduction to formate are suggested using hierarchical tin dendrite electrodes (multi‐branched conifer‐like structure) that show remarkable activity and stability. The initial oxygen content of the tin electrode is set as “selectivity descriptor” and the architecture is manipulated to maximize the number of active sites.