Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Double-Phase High-Efficienc...
    Gang Yang; Dubus, Patrick; Sadarnac, Daniel

    IEEE transactions on power electronics, 04/2015, Letnik: 30, Številka: 4
    Journal Article

    In this paper, a 2.5-kW 330-410-V/14-V, 250-kHz dc/dc converter prototype is developed targeted for electric vehicle/hybrid vehicle applications. Benefiting from numerous advantages brought by the LLC resonant topology, this converter is able to perform high efficiency, high power density, and low EMI. To arrange high-output current, this paper proposes a parallel-connected LLC structure with developed novel double-loop control to realize an equal current distribution and an overall efficiency improvement. Considering the LLC cell's dimensioning, this paper establishes a more precise model by taking the secondary leakage inductance into consideration. System amelioration and design considerations of the developed LLC are also presented in this paper. A special transformer is presented, and various types of power losses are quantified to improve its efficiency. This converter also implements synchronous rectification, power semiconductor module, and an air-cooling system. The power conversion performance of this prototype is measured and the developed prototype attains a peak efficiency of 95% and efficiency is higher than 94% from 500 W to 2 kW, with a power density of 1 W/cm 3 . Finally, the EMC results of this prototype are also measured and presented.