Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Novel Biochemical Propertie...
    Valenzuela-García, Luz I; Zapata, Blanca L; Ramírez-Ramírez, Norma; Huchin-Mian, Juan P; Robleto, Eduardo A; Ayala-García, Víctor M; Pedraza-Reyes, Mario

    Applied and environmental microbiology, 10/2020, Letnik: 86, Številka: 20
    Journal Article

    Cr(VI) is mutagenic and teratogenic and considered an environmental pollutant of increasing concern. The use of microbial enzymes that convert this ion into its less toxic reduced insoluble form, Cr(III), represents a valuable bioremediation strategy. In this study, we examined the YhdA enzyme, which belongs to the family of NADPH-dependent flavin mononucleotide oxide reductases and possesses azo-reductase activity as a factor that upon overexpression confers protection on from the cytotoxic effects promoted by Cr(VI) and counteracts the mutagenic effects of the reactive oxygen species (ROS)-promoted lesion 8-OxoG. Further, our assays unveiled catalytic and biochemical properties of biotechnological relevance in YhdA; a pure recombinant His -YhdA protein efficiently catalyzed the reduction of Cr(VI) employing NADPH as a cofactor. The activity of the pure oxidoreductase YhdA was optimal at 30°C and at pH 7.5 and displayed and values of 7.26 mM and 26.8 μmol·min ·mg for Cr(VI), respectively. Therefore, YhdA can be used for efficient bioremediation of Cr(VI) and counteracts the cytotoxic and genotoxic effects of oxygen radicals induced by intracellular factors and those generated during reduction of hexavalent chromium. Here, we report that the bacterial flavin mononucleotide/NADPH-dependent oxidoreductase YhdA, widely distributed among Gram-positive bacilli, conferred protection to cells from the cytotoxic effects of Cr(VI) and prevented the hypermutagenesis exhibited by a MutT/MutM/MutY-deficient strain. Additionally, a purified recombinant His -YhdA protein displayed a strong NADPH-dependent chromate reductase activity. Therefore, we postulate that in bacterial cells, YhdA counteracts the cytotoxic and genotoxic effects of intracellular and extracellular inducers of oxygen radicals, including those caused by hexavalent chromium.