Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Effect of the Steric Molecu...
    Ishikawa, Daisuke; Ito, Eisuke; Han, Mina; Hara, Masahiko

    Langmuir, 04/2013, Letnik: 29, Številka: 14
    Journal Article

    The growth processes of self-assembled monolayers (SAMs) of two azobenzene disulfides formed on flat gold surfaces were studied to confirm the effect of the intermolecular interactions between azobenzene molecules on the light-triggered surface morphologies of the SAMs. Scanning tunneling microscopy (STM), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–vis) absorption spectroscopy were employed to study the SAMs and their growth processes. The SAMs studied were of bulky-substituted azobenzene disulfide (Et-2S), and nonsubstituted azobenzene disulfide (Me-2S), formed on a gold-covered substrate, and had a twisted and a planar structure, respectively. STM-based imaging of the initial stage of the self-assembly of the Et-2S molecules revealed that cleavage of the disulfide bond occurred on the gold surface, and phase-separated domains composed of azobenzenethiolate and dodecanethiolate were formed. Time-dependent AFM-based imaging illustrated the mechanism through which the Et-2S SAM grewit was through the formation of dendritic aggregates and islandseventually resulting in phase-separated domains with a wormlike structure. This wormlike structure showed noticeable changes in its surface morphology upon irradiation with UV and visible light. On the other hand, while the growth process for the Me-2S SAM was similar to that of the Et-2S SAM, the final Me-2S SAM had smooth domains whose morphology did not exhibit photoswitchability. The TD and XP spectra of the SAMs showed that the number of adsorbed Et-2S molecules reached a point of saturation after a 24 h long immersion while the number of Me-2S molecules increased even after a 336 h long immersion. Furthermore, the area occupied by the azobenzene moiety in the Et-2S SAM was constant regardless of the immersion time, whereas that in the Me-2S SAM decreased with the immersion time. These results indicated that the strength of the interactions between the azobenzene molecules significantly influenced the aggregate-forming ability in SAMs.