Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Supplementation with L-Hist...
    Keller, Karen A.; Coffield, Julie A.; Chu, Ye; Grider, Arthur

    The Journal of nutrition, 06/2000, Letnik: 130, Številka: 6
    Journal Article

    Zinc, an essential dietary element, modulates neurotransmission in brain regions associated with cognition. Cognitive dysfunction has been reported in offspring of female rats fed zinc-restricted diets during gestation and/or lactation. Studies on the cognitive effects of zinc restriction during young adulthood are limited. After a 3-wk period of dietary zinc restriction, male rats (71–75 d old) were repleted with zinc chloride alone, or zinc chloride supplemented with L-histidine, and short-term memory was measured using the Morris water maze. During restriction, zinc-restricted rats demonstrated significantly longer (86.0%) retrieval latencies than nonrestricted controls, and significantly lower liver (25.5%), bone (32.5%) and hippocampal (3.2%) zinc concentrations. During subsequent repletion, rats repleted with zinc chloride supplemented with L-histidine improved their retrieval latencies to the extent that they were no longer significantly different from controls by repletion d 3. This was associated with a return of hippocampal zinc concentrations to control values by repletion d 3. The mean retrieval escape latencies of the zinc chloride–repleted rats remained significantly prolonged (75.0%). Collectively, these data indicate the following: 1) feeding a zinc-restricted diet for 3 wk impairs short-term memory in young adult male rats, and 2) repletion with dietary zinc supplemented with L-histidine improves short-term memory function more efficiently than dietary zinc chloride alone. The latter point suggests that dietary zinc supplemented with L-histidine is more bioavailable to the brain than zinc provided as zinc chloride alone. These findings are important in that they highlight the importance of both dietary zinc formulation and the use of functional assessments in determining zinc nutriture.