Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Oriented Quasi‐2D Perovskit...
    Yang, Rong; Li, Renzhi; Cao, Yu; Wei, Yingqiang; Miao, Yanfeng; Tan, Wen Liang; Jiao, Xuechen; Chen, Hong; Zhang, Liangdong; Chen, Qing; Zhang, Huotian; Zou, Wei; Wang, Yuming; Yang, Ming; Yi, Chang; Wang, Nana; Gao, Feng; McNeill, Christopher R.; Qin, Tianshi; Wang, Jianpu; Huang, Wei

    Advanced materials (Weinheim), 12/2018, Letnik: 30, Številka: 51
    Journal Article

    Quasi‐2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water‐stable quasi‐2D perovskite solar cells with a peak PCE of 18.20% by using 3‐bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of ≈40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi‐2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large‐bandgap perovskites with the vertical growth in the bottom region and oriented small‐bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light‐emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density of 200 mA cm−2 in air. High‐crystallinity quasi‐2D perovskite films with oriented structure are fabricated by using 3‐bromobenzylammonium iodide, leading to perovskite solar cells with a high efficiency of 18.20%. Moreover, the unencapsulated devices exhibit excellent moisture resistance, retaining 82% of the initial efficiency after 2400 h under ambient conditions. Even after immersion into water for 60 s, the unsealed device shows little decay.