Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • The effects of nutrient add...
    Lagaria, A.; Psarra, S.; Lefèvre, D.; Van Wambeke, F.; Courties, C.; Pujo-Pay, M.; Oriol, L.; Tanaka, T.; Christaki, U.

    Biogeosciences, 01/2011, Letnik: 8, Številka: 9
    Journal Article

    We examined the effects of nutrient additions on rates of 14C-based particulate and dissolved primary production as well as O2-based metabolic rates in surface waters (8 m) of three anticyclonic eddies, located in the Western, Central and Eastern Mediterranean. Ship-board microcosm experiments employing additions of inorganic nitrogen (+N) and phosphorus (+P), alone and in combination (+NP), were conducted in June/July 2008 during the BOUM (Biogeochemistry from the Oligotrophic to the Ultra-oligotrophic Mediterranean) cruise. In all three experiments, particulate primary production was significantly stimulated by the additions of nitrogen (+N, +NP) while no effect was observed with the addition of phosphorus alone (+P). Percent extracellular release of photosynthate (PER) displayed the lowest values (4–8 %) in the +NP treatment. Among the three treatments (+N, +P, +NP), the +NP had the strongest effect on oxygen metabolic rates, leading to positive values of net community production (NCP > 0). These changes of NCP were mainly due to enhanced gross primary production (GPP) rather than reduced dark community respiration rates (DCR). In all three sites, in +NP treatment autotrophic production (whether expressed as GPP or PPtotal) was sufficient to fulfil the estimated carbon requirements of heterotrophic prokaryotes, while addition of nitrogen alone (+N) had a weaker effect on GPP, resulting in metabolically balanced systems. At the three sites, in treatments with N (+N, +NP), phytoplankton and heterotrophic prokaryote production were positively correlated. Heterotrophic conditions were observed in the Control and +P treatment at the central and eastern sites, and autotrophic production was not sufficient to supply estimated bacterial carbon demand, evidence of a decoupling of phytoplankton production and consumption by heterotrophic prokaryotes.