Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • A Ring Accelerator? Unusual...
    Britzen, S; Zajacek, M; Popovic, L C; Fendt, C; Tramacere, A; Pashchenko, I N; Jaron, F; Panis, R; Petrov, L; Aller, M F; Aller, H D

    Monthly notices of the Royal Astronomical Society, 05/2021, Letnik: 503, Številka: 3
    Journal Article

    On 2019/07/30.86853 UT, IceCube detected a high-energy astrophysical neutrino can-didate. The Flat Spectrum Radio Quasar PKS 1502+106 is located within the 50 percent uncertainty region of the event. Our analysis of 15 GHz Very Long Baseline Ar-ray (VLBA) and astrometric 8 GHz VLBA data, in a time span prior and after theIceCube event, reveals evidence for a radio ring structure which develops with time.Several arc-structures evolve perpendicular to the jet ridge line. We find evidence forprecession of a curved jet based on kinematic modelling and a periodicity analysis.An outflowing broad line region (BLR) based on the C IV line emission (Sloan Dig-ital Sky Survey, SDSS) is found. We attribute the atypical ring to an interaction ofthe precessing jet with the outflowing material.We discuss our findings in thecontext of a spine-sheath scenario where the ring reveals the sheath andits interaction with the surroundings (NLR clouds).We find that the radioemission is correlated with theγ-ray emission, with radio lagging theγ-rays. Basedon theγ-ray variability timescale, we constrain theγ-ray emission zone to the BLR(30-200rg) and within the jet launching region. We discuss that the outflowing BLRprovides the external radiation field forγ-ray production via external Compton scat-tering.The neutrino is most likely produced by proton-proton interactionin the blazar zone (beyond the BLR), enabled by episodic encounters ofthe jet with dense clouds, i.e. some molecular cloud in the NLR.