Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Revised Architecture and Tw...
    Li, Zhexing; Kane, Stephen R.; Brandt, Timothy D.; Fetherolf, Tara; Robertson, Paul; Zhao, Jinglin; Dalba, Paul A.; Wittenmyer, Robert A.; Butler, R. Paul; Díaz, Matías R.; Howell, Steve B.; Bailey, Jeremy; Carter, Brad; Furlan, Elise; Gnilka, Crystal L.; Horner, Jonathan; Jones, Hugh R. A.; O’Toole, Simon; Tinney, Chris

    The Astronomical journal, 04/2024, Letnik: 167, Številka: 4
    Journal Article

    Abstract Multiplanet systems exhibit a diversity of architectures that diverge from the solar system and contribute to the topic of exoplanet demographics. Radial velocity (RV) surveys form a crucial component of exoplanet surveys, as their long observational baselines allow for searches for more distant planetary orbits. This work provides a significantly revised architecture for the multiplanet system HD 134606 using both HARPS and UCLES RVs. We confirm the presence of previously reported planets b, c, and d with periods of 12.0897 − 0.0018 + 0.0019 , 58.947 − 0.054 + 0.056 , and 958.7 − 5.9 + 6.3 days and masses of 9.14 − 0.63 + 0.65 , 11.0 ± 1, and 44.5 ± 2.9 Earth masses, respectively, with the planet d orbit significantly revised to over double that originally reported. We report two newly detected super-Earths, e and f, with periods of 4.31943 − 0.00068 + 0.00075 and 26.9 − 0.017 + 0.019 days and masses of 2.31 − 0.35 + 0.36 and 5.52 − 0.73 + 0.74 Earth masses, respectively. In addition, we identify a linear trend in the RV time series, and the cause of this acceleration is deemed to be a newly detected massive companion with a very long orbital period. HD 134606 now displays four low-mass planets in a compact region near the star, one gas giant further out in the habitable zone, an additional companion in the outer regime, and a low-mass M dwarf stellar companion at large separation, making it an intriguing target for system formation/evolution studies. The location of planet d in the habitable zone proves to be an exciting candidate for future space-based direct imaging missions, whereas continued RV observations of this system are recommended for understanding the nature of the massive, long-period companion.