Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Bioinspired Nanoparticles w...
    Su, Jinghan; Sun, Huiping; Meng, Qingshuo; Yin, Qi; Zhang, Pengcheng; Zhang, Zhiwen; Yu, Haijun; Li, Yaping

    Advanced functional materials, November 2, 2016, Letnik: 26, Številka: 41
    Journal Article

    Optimal nanosized drug delivery systems (NDDS) require long blood circulation and controlled drug release at target lesions for efficient anticancer therapy. Red blood cell (RBC) membrane‐camouflaged nanoparticles (NPs) can integrate flexibility of synergetic materials and highly functionality of RBC membrane, endowed with many unique advantages for drug delivery. Here, new near‐infrared (NIR)‐responsive RBC membrane‐mimetic NPs with NIR‐activated cellular uptake and controlled drug release for treating metastatic breast cancer are reported. An NIR dye is inserted in RBC membrane shells, and the thermoresponsive lipid is employed to the paclitaxel (PTX)‐loaded polymeric cores to fabricate the RBC‐inspired NPs. The fluorescence of dye in the NPs can be used for in vivo tumor imaging with an elongated circulating halftime that is 12.3‐folder higher than that of the free dye. Under the NIR laser stimuli, the tumor cellular uptake of NPs is significantly enhanced to 2.1‐fold higher than that without irradiation. The structure of the RBC‐mimetic NPs can be destroyed by the light‐induced hyperthermia, triggered rapid PTX release (45% in 30 min). These RBC‐mimetic NPs provide a synergetic chemophotothermal therapy, completely inhibited the growth of the primary tumor, and suppress over 98% of lung metastasis in vivo, suggesting it to be an ideal NDDS to fight against metastatic breast cancer. Bioinspired nanoparticles with near infrared (NIR)‐controlled drug release for synergetic chemophotothermal therapy load paclitaxel in the polymeric cores and cyanine dye (DiR) in the red blood cell (RBC) membrane shells. This overcomes the limited cellular uptake and slow drug release at tumor lesions of RBC‐mimetic nanosized drug delivery systems (NDDS), integrates real‐time tracking, allows NIR‐triggered tumor‐specific drug release and synergetic chemo‐photothermal therapy, and provides new insights for optimization of mimetic NDDS.