Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Metallic resources in smart...
    Bookhagen, B.; Bastian, D.; Buchholz, P.; Faulstich, M.; Opper, C.; Irrgeher, J.; Prohaska, T.; Koeberl, C.

    Resources policy, October 2020, 2020-10-00, 20201001, Letnik: 68
    Journal Article

    53 metallic elements from smartphones were investigated with regard to metal prices, metal production, and content in comparison to mined ores. The metal content of the 7.42 billion smartphone devices sold from 2012 to 2017 could theoretically maintain the global supply for 91 days for Ga, 73 days for Ta, 23 days for Pd, 14 days for Au, and 6 days for REE. The pure metal value of a single smartphone device for the investigated metals currently sums to 1.13 US $; it averaged at 1.05 US $ from 2012 to 2017 with the highest value of 1.32 US $ in 2012. The Au content is low (16.83 mg per device), yet constitutes the highest value with a current share of approximately 72% of total value for all measured metals, followed by Pd (10%). Approximately 82% of total metal value can be recycled with current standard recycling methods for Au, Cu, Pd, Pt, which only comprise 6 wt% of the total device. The printed circuit board (pcb) contains 90% of the measured Au, 98% of Cu, 99% of Pd, 86% of In, and 93% of Ta. The Au, Pd, Cu, Pt, Ta, In, Ga contents in a smartphone pcb are significantly higher than the metal content in currently mined ores. Magnets contain 96% of the measured REE and 40% of the measured Ga, with higher concentrations than ores for REE and Ga. For Co and Ge, metal content in smartphones (w/o batteries) is lower than in ores. Display omitted •Detailed content of 53 metals from smartphones is investigated.•Metal concentrations in smartphones are compared with currently mined ores.•Fluctuating metal prices can affect recycling efforts.•Potential recycling options and obstacles for metals in smartphones are discussed.