Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Superhydrophobic antibacter...
    Park, Chanwoo; Kim, Taegun; Samuel, Edmund P.; Kim, Yong-Il; An, Seongpil; Yoon, Sam S.

    Journal of power sources, 09/2021, Letnik: 506
    Journal Article

    Reduced graphene oxide (rGO), carbon nanotubes (CNTs), and copper nanoparticles were supersonically sprayed onto a fabric to yield a wearable energy storage device with multifunctional sensing capabilities. This wearable electronic device is superhydrophobic and antibacterial, demonstrating its suitability for smart sportswear, futuristic military uniforms, healthcare monitoring, human-machine interfaces, and intelligent soft robotics. Both rGO and the CNTs contribute to the double-layer capacitance properties, owing to the accumulation of electrostatic charges, whereas copper enhances the charge transfer and pseudocapacitance via redox reactions with the electrolyte. The fabric is bendable, stretchable, and durable with respect to external mechanical stress. Because of the supersonic impact during coating, the deposited materials adhere well to the fabric surface to retain the durable mechanical properties. The rGO/CNT/Cu-coated fabric produced thermal energy by Joule heating upon application of an electrical voltage. This metallized fabric is also capable of sensing the surrounding temperature and variations in the external strain. The antibacterial properties of the fabric ensure that harmful microorganisms are destroyed, potentially preventing the spread of disease. All of these unique properties of the metallized fabric make it suitable for use in future electronic textiles, which are useful for energy-storing, heating, sensing, water-repellent, and antiviral applications. Display omitted •CNTs, rGO, and copper nanoparticles are sprayed onto a fabric.•This wearable fabric sensor is superhydrophobic and antibacterial.•The fabric can undergo Joule heating when electrical voltage was applied.•The fabric exhibits energy storage properties suitable for supercapacitors.