Akademska digitalna zbirka SLovenije - logo
E-viri
  • Modeling the source of GW15...
    Lovelace, Geoffrey; Lousto, Carlos O; Healy, James; Scheel, Mark A; Garcia, Alyssa; O'Shaughnessy, Richard; Boyle, Michael; Campanelli, Manuela; Hemberger, Daniel A; Kidder, Lawrence E; Pfeiffer, Harald P; Szilágyi, Béla; Teukolsky, Saul A; Zlochower, Yosef

    Classical and quantum gravity, 12/2016, Letnik: 33, Številka: 24
    Journal Article

    In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes (Abbott et al Virgo, LIGO Scientific 2016 Phys. Rev. Lett. 116 061102). In the final 0.2 s (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO's measurement (Abbott et al LIGO Scientific Collaboration, Virgo Collaboration 2016 Phys. Rev. Lett. 116 241102). In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.