Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Synthesis, characterization...
    Wang, Ning; Yu, Xiaopeng; Shen, Kui; Chu, Wei; Qian, Weizhong

    International journal of hydrogen energy, 08/2013, Letnik: 38, Številka: 23
    Journal Article

    A series of MgO-coated SBA-15 mesoporous silica with MgO contents ranging from 2 wt% to 15 wt% have been successfully synthesized by a simple one-pot synthesis method and further impregnated with 10 wt% Ni. Ni/SBA-15 modified with 8 wt% MgO was also prepared by conventional impregnation method. The materials were characterized by means of XRD, N2 physisorption, TEM by applying high-angle annular dark field (HAADF), XPS, CO2-TPD, TGA and temperature-programmed hydrogenation (TPH) techniques, and their catalytic performance was tested for methane reforming with CO2. The results showed that MgO was successfully coated on the walls of mesoporous silica and the mesoporous structure of SBA-15 was well maintained after MgO modification. Compared to MgO-impregnated material, MgO-coated counterpart showed a better order in the mesostructure and more medium basic sites. The addition of MgO enhanced initial catalytic activity of Ni/SBA-15, and the catalyst with 8 wt% MgO coating showed the most excellent catalytic activity. The MgO coating induced an improved dispersion of Ni species and larger medium basic sites than that of MgO impregnation, which led to an enhanced long-term stability and resistance to carbon formation. The deposition of graphitic carbon species during the reaction was the main reason for the deactivation of Ni/SBA-15 catalyst. In comparison with those of MgO-impregnated SBA-15 material, the MgO-coated SBA-15 using one-pot strategy possessed obviously larger medium basic sites and a higher dispersion of Ni species, which inhibited the occurring of carbon formation and resulted in a better catalytic stability. Display omitted •MgO-coated SBA-15 catalysts were prepared by one-pot method.•The coating by MgO induced an improved Ni dispersion and medium basic sites.•The MgO-coated catalyst exhibited excellent catalytic activity and stability.•Carbon deposition was the main reason for the deactivation of catalyst.