Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Impacts of viaduct and geom...
    Lu, Kai-Fa; Peng, Zhong-Ren

    The Science of the total environment, 02/2023, Letnik: 858
    Journal Article

    Viaduct is a ubiquitous transportation infrastructure in the congested megacities worldwide to improve the accessibility and capacity of urban transportation network. However, there is a lack of understanding of the impacts of the interplay between viaduct-ground emissions and viaduct-canyon configurations on the particle distribution in urban street canyon. To fill the research gap, we conducted vertical measurements of particle number concentrations (PNCs) at different heights of “street canyon along a viaduct” to reveal effect of viaduct on the vertical distribution of PNCs in street canyon. Observation results indicated that the vertical profiles of PNCs exhibited bimodal distribution patterns, which were more significant for coarse particles than fine particles. The one peak appeared at ground level and the other at the viaduct height, indicating the impacts of “double” emission sources (i.e., the emissions on the ground and viaduct) and the hindrance of viaduct to particle diffusion. We further modelled the role of viaduct in street canyon through Computational Fluid Dynamics (CFD) simulations to reveal the vertical distribution of particles under different viaduct-canyon configurations and discern the contributions of viaduct and ground emissions to the particle distribution. Simulation results showed that viaduct changed airflow field and turbulence structure and elevated particle concentrations in street canyon while the optimized viaduct-canyon configurations including higher viaduct height (12 > 10 > 8 m), smaller aspect ratio (0.5 > 0.67 > 1), and shorter centerline distance (0 > 1 > 2 m) between canyon and viaduct could bring better dispersion conditions and lower particle concentrations. Additionally, ground emissions contributed more to the vertical distribution of particles on the leeward side of street canyon than viaduct emissions while the windward side displayed the opposite characteristics to the leeward side. These findings revealed the general patterns of particle diffusion in viaduct-canyon configurations and provided implications into viaduct design and traffic management to alleviate local particulate pollution. Display omitted •Spatial distributions of particles in “street canyon along a viaduct” are studied.•Field study and simulation are used for impacts of viaduct on particle distribution.•Measured profiles and slopes of wind speed & particles are used to calibrate model.•Viaduct alters airflow, adds emission sources, and changes particle distribution.•Ground and viaduct emission separately affect particles on leeward/windward sides.