Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Chloride induced reinforcem...
    Van Belleghem, Bjorn; Kessler, Sylvia; Van den Heede, Philip; Van Tittelboom, Kim; De Belie, Nele

    Cement and concrete research, 11/2018, Letnik: 113
    Journal Article

    Cracks in reinforced concrete structures accelerate the ingress of chlorides and therefore cause a higher risk for corrosion. In this research, autonomous healing of cracks by encapsulated polyurethane was investigated as a possible method to reduce reinforcement corrosion. Reinforced concrete beams were exposed weekly to a chloride solution and electrochemical parameters were measured to determine the influence of the self-healing mechanism on the corrosion process. The rebars were visually examined afterwards. For the cracked beams an active state of corrosion was detected within an exposure period of 10 weeks and clear pitting corrosion was observed on the rebars. Autonomous crack healing with low viscosity polyurethane could significantly reduce the corrosion in the propagation stage. For these specimens no visual damage to the rebars was detected. In conclusion, the application of self-healing concrete with a low viscosity polyurethane is able to enhance the durability of reinforced concrete structures in marine environments.