Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Transition from Battery to ...
    Mitchell, James B; Lo, William C; Genc, Arda; LeBeau, James; Augustyn, Veronica

    Chemistry of materials, 05/2017, Letnik: 29, Številka: 9
    Journal Article

    The kinetics of energy storage in transition metal oxides are usually limited by solid-state diffusion, and the strategy most often utilized to improve their rate capability is to reduce ion diffusion distances by utilizing nanostructured materials. Here, another strategy for improving the kinetics of layered transition metal oxides by the presence of structural water is proposed. To investigate this strategy, the electrochemical energy storage behavior of a model hydrated layered oxide, WO3·2H2O, is compared with that of anhydrous WO3 in an acidic electrolyte. It is found that the presence of structural water leads to a transition from battery-like behavior in the anhydrous WO3 to ideally pseudocapacitive behavior in WO3·2H2O. As a result, WO3·2H2O exhibits significantly improved capacity retention and energy efficiency for proton storage over WO3 at sweep rates as fast as 200 mV s–1, corresponding to charge/discharge times of just a few seconds. Importantly, the energy storage of WO3·2H2O at such rates is nearly 100% efficient, unlike in the case of anhydrous WO3. Pseudocapacitance in WO3·2H2O allows for high-mass loading electrodes (>3 mg cm–2) and high areal capacitances (>0.25 F cm–2 at 200 mV s–1) with simple slurry-cast electrodes. These results demonstrate a new approach for developing pseudocapacitance in layered transition metal oxides for high-power energy storage, as well as the importance of energy efficiency as a metric of performance of pseudocapacitive materials.