Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Characterization of a chemi...
    Cho, Changmin; Hofzumahaus, Andreas; Fuchs, Hendrik; Dorn, Hans-Peter; Glowania, Marvin; Holland, Frank; Rohrer, Franz; Vardhan, Vaishali; Kiendler-Scharr, Astrid; Wahner, Andreas; Novelli, Anna

    Atmospheric measurement techniques, 03/2021, Letnik: 14, Številka: 3
    Journal Article

    Precise and accurate hydroxyl radical (OH) measurements are essential to investigate mechanisms for oxidation and transformation of trace gases and processes leading to the formation of secondary pollutants like ozone (O.sub.3) in the troposphere. Laser-induced fluorescence (LIF) is a widely used technique for the measurement of ambient OH radicals and was used for the majority of field campaigns and chamber experiments. Recently, most LIF instruments in use for atmospheric measurements of OH radicals introduced chemical modulation to separate the ambient OH radical concentration from possible interferences by chemically removing ambient OH radicals before they enter the detection cell (Mao et al., 2012; Novelli et al., 2014a). In this study, we describe the application and characterization of a chemical modulation reactor (CMR) applied to the Forschungszentrum Jülich LIF (FZJ-LIF) instrument in use at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). Besides dedicated experiments in synthetic air, the new technique was extensively tested during the year-round Jülich Atmospheric Chemistry Project (JULIAC) campaign, in which ambient air was continuously flowed into the SAPHIR chamber. It allowed for performing OH measurement comparisons with differential optical absorption spectroscopy (DOAS) and investigation of interferences in a large variety of chemical and meteorological conditions. Good agreement was obtained in the LIF-DOAS intercomparison within instrumental accuracies (18 % for LIF and 6.5 % for DOAS) which confirms that the new chemical modulation system of the FZJ-LIF instrument is suitable for measurement of interference-free OH concentrations under the conditions of the JULIAC campaign (rural environment). Known interferences from O.sub.3 +H.sub.2 O and the nitrate radical (NO.sub.3) were quantified with the CMR in synthetic air in the chamber and found to be 3.0x10.sup.5 and 0.6x10.sup.5 cm.sup.-3, respectively, for typical ambient-air conditions (O.sub.3 =50 ppbv, H.sub.2 O = 1 % and NO.sub.3 =10 pptv). The interferences measured in ambient air during the JULIAC campaign in the summer season showed a median diurnal variation with a median maximum value of 0.9x10.sup.6 cm.sup.-3 during daytime and a median minimum value of 0.4x10.sup.6 cm.sup.-3 at night. The highest interference of 2x10.sup.6 cm.sup.-3 occurred in a heat wave from 22 to 29 August, when the air temperature and ozone increased to 40 .sup." C and 100 ppbv, respectively. All observed interferences could be fully explained by the known O.sub.3 +H.sub.2 O interference, which is routinely corrected in FZJ-LIF measurements when no chemical modulation is applied. No evidence for an unexplained interference was found during the JULIAC campaign.