Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • A Central Dinucleotide with...
    van den Bemd, Gert-Jan C.M.; Jhamai, Mila; Staal, Ada; van Wijnen, André J.; Lian, Jane B.; Stein, Gary S.; Pols, Huibert A.P.; van Leeuwen, Johannes P.T.M.

    The Journal of biological chemistry, 04/2002, Letnik: 277, Številka: 17
    Journal Article

    There is considerable divergence in the sequences of steroid receptor response elements, including the vitamin D response elements (VDREs). Two major VDRE-containing and thus 1,25-dihydroxyvitamin D3(1,25-(OH)2D3)-regulated genes are the two non-collagenous, osteoblast-derived bone matrix proteins osteocalcin and osteopontin. We observed a stronger induction of osteopontin than osteocalcin mRNA expression by 1,25-(OH)2D3. Subsequently, we have shown that vitamin D receptor/retinoid X receptor α (VDR/RXRα) heterodimers bind more tightly to the osteopontin VDRE than to the osteocalcin VDRE. Studies using point mutants revealed that the internal dinucleotide at positions 3 and 4 of the proximal steroid half-element are most important for modulating the strength of receptor binding. In addition, studies with VDRE-driven luciferase reporter gene constructs revealed that the central dinucleotide influences the transactivation potential of VDR/RXRα with the same order of magnitude as that observed in the DNA binding studies. The synthetic vitamin D analog KH1060 is a more potent stimulator of transcription and inducer of VDRE binding of VDR/RXR in the presence of nuclear factors isolated from ROS 17/2.8 osteoblast-like cells than the natural ligand 1,25-(OH)2D3. Interestingly, however, KH1060 is comparable or even less potent than 1,25-(OH)2D3 in stimulating VDRE binding ofin vitro synthesized VDR/RXRα. Thus, the extent of 1,25-(OH)2D3- and KH1060-dependent binding of VDR/RXRα is specified by a central dinucleotide in the VDRE, and the ligand-induced effects on DNA binding are in part controlled by the cellular context of nuclear proteins.