Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Reactive Ceramic Membrane f...
    Li, Shuo; Zhang, Xuan; Fang, Rui; Cheng, Zhiliang; Xu, Qian; Ma, Shu; Xiong, Jie; Chen, Peng; Feng, Guangjie

    Crystals, 04/2023, Letnik: 13, Številka: 4
    Journal Article

    Micropollutants (MPs) are widely occurring in surface water all over the world with extremely low concentrations, and their treatment requires high energy consumption and efficiency. In this study, a large-sized planar photocatalytic reactive ceramic membrane (PRCM) was prepared using the facile dip-coating method with nitrogen-doped TiO2 (N-TiO2-CM) for the purification of tetracycline hydrochloride (TC) as a model MP. The N-TiO2 nanoparticles and the as-prepared N-TiO2-CM were characterized by SEM/EDS, TEM, XPS, UV–Vis DRS, and FT-IR. A fixed bed reactor integrated N-TiO2-CM, and visible LED light was fabricated for the new PRCM water treatment system for the removal of TC with a comprehensive consideration of the degradation rate and permeate flux. The SEM/EDS results indicated that the N-TiO2 was uniformly and tightly loaded onto the flat CM, and the pure water flux could reach over 2000 L/(m2 × h) under a trans-membrane pressure (TMP) of −92 kPa. The fixed bed PRCM water treatment system is extremely suited for MP purification, and the removal efficiency of TC was as high as 92% with 270 min even though its initial concentration was as low as 20 mg/L. The degradation rate and permeate flux of N-TiO2-CM was 2.57 and 2.30 times as high as that of the CM, indicating its good self-cleaning characteristics. The quenching experiments illustrated that the reactive radicals involved in the PRCM process, •OH and •O2−, were responsible for TC degradation. This research also provides a utilization proposal for a scale-up N-TiO2-CM system for water and wastewater treatment.