Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Characterization of Site-Sp...
    Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Gun Wook; Hwang, Heeyoun; Jeong, Hoi Keun; Yun, Ki Na; Ji, Eun Sun; Kim, Kwang Hoe; Kim, Jun Seok; Kim, Jong Won; Yun, Sung Ho; Choi, Chi-Won; Kim, Seung Il; Lim, Jong-Sun; Jeong, Seul-Ki; Paik, Young-Ki; Lee, Soo-Youn; Park, Jisook; Kim, Su Yeon; Choi, Young-Jin; Kim, Yong-In; Seo, Jawon; Cho, Je-Yoel; Oh, Myoung Jin; Seo, Nari; An, Hyun Joo; Kim, Jin Young; Yoo, Jong Shin

    Journal of proteome research, 12/2016, Letnik: 15, Številka: 12
    Journal Article

    Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC–MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.