Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Female-Specific Induction o...
    Kucka, Marek; Bjelobaba, Ivana; Clokie, Samuel J. H; Klein, David C; Stojilkovic, Stanko S

    Molecular endocrinology, 11/2013, Letnik: 27, Številka: 11
    Journal Article

    Hypothalamic GnRH is the primary regulator of reproduction in vertebrates, acting via the G protein-coupled GnRH receptor (GnRHR) in pituitary gonadotrophs to control synthesis and release of gonadotropins. To identify elements of the GnRHR-coupled gene network, GnRH was applied in a pulsatile manner for 6 hours to a mixed population of perifused pituitary cells from cycling females, mRNA was extracted, and RNA sequencing analysis was performed. This revealed 83 candidate-regulated genes, including a large number coding for secreted proteins. Most notably, GnRH induces a greater than 600-fold increase in expression of dentin matrix protein-1 (Dmp1), one of five members of the small integrin-binding ligand N-linked glycoprotein gene family. The Dmp1 response is mediated by the GnRHR, not elicited by other hypothalamic releasing factors, and is approximately 20-fold smaller in adult male pituitary cells. The sex-dependent Dmp1 response is established during the peripubertal period and independent of the developmental pattern of Gnrhr expression. In vitro, GnRH-induced expression of this gene is coupled with release of DMP1 in extracellular medium through the regulated secretory pathway. In vivo, pituitary Dmp1 expression in identified gonadotrophs is elevated after ovulation. Cell signaling studies revealed that the GnRH induction of Dmp1 is mediated by the protein kinase C signaling pathway and reflects opposing roles of ERK1/2 and p38 MAPK; in addition, the response is facilitated by progesterone. These results establish that DMP1 is a novel secretory protein of female rat gonadotrophs, the synthesis and release of which are controlled by the hypothalamus through the GnRHR signaling pathway. This advance raises intriguing questions about the intrapituitary and downstream effects of this new player in GnRH signaling.