Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Cathodic Deposition‐Assiste...
    Xie, Sijie; Tan, Xiaoyu; Xue, Zhenhong; Geysens, Pieter; Pan, Hui; Guo, Wei; Zhou, Zhenyu; Zhang, Xuan; Vankelecom, Ivo F. J.; Fransaer, Jan

    Angewandte Chemie International Edition, July 1, 2024, Letnik: 63, Številka: 27
    Journal Article

    Glass metal–organic framework (MOF) films can be fabricated from their crystalline counterparts through a melt‐quenching process and are prospective candidates for gas separation because of the elimination of the grain boundaries in crystalline MOF films. However, current techniques are limited to producing glass MOF films with a thickness of tens of micrometers, which leads to ultralow gas permeances. Here, we report a novel cathodic deposition‐assisted synthesis of glass ZIF‐62 films with a thickness as low as ~1 μm. Electrochemical analyses and deposition experiments suggest that the cathodic deposition can lead to pure crystalline ZIF‐62 films with a controllable thickness of ~2 μm to ~15 μm. Accordingly, glass ZIF‐62 films with a thickness of ~1 μm to ~10 μm can be obtained after a thermal treatment. The fabricated defect‐free glass ZIF‐62 film measuring 2 μm in thickness shows a remarkable CO2/N2 and CO2/CH4 selectivity of 31.4 and 33.4, respectively, with a CO2 permeance which is over 30 times higher than the best‐performing glass ZIF‐62 films in literature. Unlike traditional methods that lead to glass MOF films with a thickness of tens of micrometers, the proposed cathodic deposition‐assisted approach can produce glass MOF films with a thickness of 2 μm. The fabricated thin glass ZIF‐62 film shows a record‐high CO2 permeance without compromising the selectivity in CO2/N2 and CO2/CH4 separations.