Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano
  • Interaction between differe...
    VARRAINE, Elodie; BONNARD, Mireille; PAILHOUS, Jean

    Experimental brain research, 02/2002, Letnik: 142, Številka: 3
    Journal Article

    This experiment investigates the interaction of different sensory cues in the control of propulsive forces in human gait which in turn allow the body's forward progression to be regulated. The aim of this work was to determine how optic flow and leg-somatosensory feedback interact in this control. We therefore determined whether the responses to sinusoidal perturbations of optic flow were accentuated when leg-somatosensory feedback was modified by varying the support resistance. Subjects walked on a treadmill which was driven by their own locomotor activity (1) with a sinusoidal variation of optic flow velocity, (2) with a sinusoidal variation of support resistance which modified leg-somatosensory information and (3) with both visual and leg-somatosensory modification at different frequencies. The response of the subject was measured as changes in speed and propulsive power. The response to sinusoidal perturbations of optic flow was found to be increased and time delayed when visual perturbations are coupled with support perturbations in comparison with the response observed with visual perturbations only. This result shows the influence of leg-somatosensory feedback on the weighting of optic flow. Inversely, it was also found that the motor response to support perturbation was different when the flow was congruent (i.e., corresponding to the subject's virtual speed) and when it was not. This latter result shows the influence of optic flow on the weighting of leg-somatosensory feedback. The interaction between optic flow and leg-somatosensory feedback argues in favor of a multimodal sensory control of propulsive forces. This multimodal sensory control would be based on all the sensory feedback and all their mutual sensorial interaction. Therefore, the modification of one sensory input modifies not only this input but also the integration of the other inputs.