Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Navitoclax, a targeted high...
    Wilson, Wyndham H, Prof; O'Connor, Owen A, Prof; Czuczman, Myron S, Prof; LaCasce, Ann S, MD; Gerecitano, John F, MD; Leonard, John P, Prof; Tulpule, Anil, MD; Dunleavy, Kieron, MD; Xiong, Hao, PhD; Chiu, Yi-Lin, PhD; Cui, Yue, PhD; Busman, Todd, MS; Elmore, Steven W, PhD; Rosenberg, Saul H, PhD; Krivoshik, Andrew P, MD; Enschede, Sari H, MD; Humerickhouse, Rod A, MD

    The lancet oncology, 12/2010, Letnik: 11, Številka: 12
    Journal Article

    Summary Background Proteins of the BCL-2 family regulate clonal selection and survival of lymphocytes, and are frequently overexpressed in lymphomas. Navitoclax is a targeted high-affinity small molecule that inhibits the anti-apoptotic activity of BCL-2 and BCL-XL. We aimed to assess the safety and antitumour activity of navitoclax in patients with lymphoid tumours, and establish the drug's pharmacokinetic and pharmacodynamic profiles. Methods In this phase 1 dose-escalation study, patients (aged ≥18 years) with relapsed or refractory lymphoid malignancies were enrolled and treated at seven sites in the USA between November, 2006, and November, 2009. A modified Fibonacci 3+3 design was used to assign patients to receive oral navitoclax once daily by one of two dosing schedules: intermittently for the first 14 days of a 21-day cycle (14/21) at doses of 10, 20, 40, 80, 110, 160, 225, 315, or 440 mg/day; or continuously for 21 days of a 21-day cycle (21/21) at doses of 200, 275, 325, or 425 mg/day. Study endpoints were safety, maximum tolerated dose, pharmacokinetic profile, pharmacodynamic effects on platelets and T cells, and antitumour activity. This trial is registered with ClinicalTrials.gov , number NCT00406809. Findings 55 patients were enrolled (median age 59 years, IQR 51–67), 38 to receive the 14/21 dosing schedule, and 17 to receive the 21/21 dosing schedule. Common toxic effects included grade 1 or 2 anaemia (41 patients), infection (39), diarrhoea (31), nausea (29), and fatigue (21); and grade 3 or 4 thrombocytopenia (29), lymphocytopenia (18), and neutropenia (18). On the intermittent 14/21 schedule, dose-limiting toxic effects were hospital admissions for bronchitis (one) and pleural effusion (one), grade 3 increase in aminotransferases (one), grade 4 thrombocytopenia (one), and grade 3 cardiac arrhythmia (one). To reduce platelet nadir associated with intermittent 14/21 dosing, we assessed a 150 mg/day lead-in dose followed by a continuous 21/21 dosing schedule. On the 21/21 dosing schedule, two patients did not complete the first cycle and were excluded from assessment of dose-limiting toxic effects; dose-limiting toxic effects were grade 4 thrombocytopenia (one), grade 3 increase in aminotransferases (one), and grade 3 gastrointestinal bleeding (one). Navitoclax showed a pharmacodynamic effect on circulating platelets and T cells. Clinical responses occurred across the range of doses and in several tumour types. Ten of 46 patients with assessable disease had a partial response, and these responders had median progression-free survival of 455 days (IQR 40–218). Interpretation Navitoclax has a novel mechanism of peripheral thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of BCL-XL and BCL-2, respectively. On the basis of these findings, a 150 mg 7-day lead-in dose followed by a 325 mg dose administered on a continuous 21/21 dosing schedule was selected for phase 2 study. Funding Abbott Laboratories, Genentech, and National Cancer Institute, National Institutes of Health.