Akademska digitalna zbirka SLovenije - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Enhanced organic mass fract...
    Dusek, U.; Frank, G. P.; Curtius, J.; Drewnick, F.; Schneider, J.; Kürten, A.; Rose, D.; Andreae, M. O.; Borrmann, S.; Pöschl, U.

    Geophysical research letters, February 2010, Letnik: 37, Številka: 3
    Journal Article

    In a forested near‐urban location in central Germany, the CCN efficiency of particles smaller than 100 nm decreases significantly during periods of new particle formation. This results in an increase of average activation diameters, ranging from 5 to 8% at supersaturations of 0.33% and 0.74%, respectively. At the same time, the organic mass fraction in the sub‐100‐nm size range increases from approximately 2/3 to 3/4. This provides evidence that secondary organic aerosol (SOA) components are involved in the growth of new particles to larger sizes, and that the reduced CCN efficiency of small particles is caused by the low hygroscopicity of the condensing material. The observed dependence of particle hygroscopicity (κ) on chemical composition can be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by aerosol mass spectrometry: κ = κorg forg + κinorg finorg. The obtained value of κorg ≈ 0.1 is characteristic for SOA, and κinorg ≈ 0.7 is consistent with the observed mix of ammonium, sulfate and nitrate ions.