Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Co-formation of the disc an...
    Belokurov, V; Erkal, D; Evans, N W; Koposov, S E; Deason, A J

    Monthly notices of the Royal Astronomical Society, 07/2018, Letnik: 478, Številka: 1
    Journal Article

    ABSTRACT Using a large sample of main sequence stars with 7D measurements supplied by Gaia and SDSS, we study the kinematic properties of the local (within ∼10 kpc from the Sun) stellar halo. We demonstrate that the halo’s velocity ellipsoid evolves strongly with metallicity. At the low-Fe/H end, the orbital anisotropy (the amount of motion in the radial direction compared with the tangential one) is mildly radial, with 0.2 <β< 0.4. For stars with Fe/H > −1.7, however, we measure extreme values of β∼ 0.9. Across the metallicity range considered, namely−3 < Fe/H < −1, the stellar halo’s spin is minimal, at the level of $20\lt \bar{v}_{\theta }(\mathrm{kms}^{-1}) \lt 30$. Using a suite of cosmological zoom-in simulations of halo formation, we deduce that the observed acute anisotropy is inconsistent with the continuous accretion of dwarf satellites. Instead, we argue, the stellar debris in the inner halo was deposited in a major accretion event by a satellite with Mvir > 1010M⊙ around the epoch of the Galactic disc formation, between 8 and 11 Gyr ago. The radical halo anisotropy is the result of the dramatic radialization of the massive progenitor’s orbit, amplified by the action of the growing disc.