Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Simulation of polar ozone d...
    Solomon, Susan; Kinnison, Doug; Bandoro, Justin; Garcia, Rolando

    Journal of geophysical research. Atmospheres, 16 August 2015, Letnik: 120, Številka: 15
    Journal Article

    We evaluate polar ozone depletion chemistry using the specified dynamics version of the Whole Atmosphere Community Climate Model for the year 2011. We find that total ozone depletion in both hemispheres is dependent on cold temperatures (below 192 K) and associated heterogeneous chemistry on polar stratospheric cloud particles. Reactions limited to warmer temperatures above 192 K, or on binary liquid aerosols, yield little modeled polar ozone depletion in either hemisphere. An imposed factor of three enhancement in stratospheric sulfate increases ozone loss by up to 20 Dobson unit (DU) in the Antarctic and 15 DU in the Arctic in this model. Such enhanced sulfate loads are similar to those observed following recent relatively small volcanic eruptions since 2005 and imply impacts on the search for polar ozone recovery. Ozone losses are strongly sensitive to temperature, with a test case cooler by 2 K producing as much as 30 DU additional ozone loss in the Antarctic and 40 DU in the Arctic. A new finding of this paper is the use of the temporal behavior and variability of ClONO2 and HCl as indicators of the efficacy of heterogeneous chemistry. Transport of ClONO2 from the southern subpolar regions near 55–65°S to higher latitudes near 65–75°S provides a flux of NOx from more sunlit latitudes to the edge of the vortex and is important for ozone loss in this model. Comparisons between modeled and observed total column and profile ozone perturbations, ClONO2 abundances, and the rate of change of HCl bolster confidence in these conclusions. Key Points Ozone loss chemistry strongly depends on polar stratospheric clouds and temperatures below 192 K ClONO2 and HCl seasonal changes and variability are key indicators of chemistry Transport of ClONO2 from the edge of the vortex to higher latitudes affects ozone loss