Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Electron density estimation...
    Pedersen, A.; Lybekk, B.; André, M.; Eriksson, A.; Masson, A.; Mozer, F. S.; Lindqvist, P.-A.; Décréau, P. M. E.; Dandouras, I.; Sauvaud, J.-A.; Fazakerley, A.; Taylor, M.; Paschmann, G.; Svenes, K. R.; Torkar, K.; Whipple, E.

    Journal of Geophysical Research, July 2008, Letnik: 113, Številka: A7
    Journal Article

    Spacecraft potential measurements by the EFW electric field experiment on the Cluster satellites can be used to obtain plasma density estimates in regions barely accessible to other type of plasma experiments. Direct calibrations of the plasma density as a function of the measured potential difference between the spacecraft and the probes can be carried out in the solar wind, the magnetosheath, and the plasmashere by the use of CIS ion density and WHISPER electron density measurements. The spacecraft photoelectron characteristic (photoelectrons escaping to the plasma in current balance with collected ambient electrons) can be calculated from knowledge of the electron current to the spacecraft based on plasma density and electron temperature data from the above mentioned experiments and can be extended to more positive spacecraft potentials by CIS ion and the PEACE electron experiments in the plasma sheet. This characteristic enables determination of the electron density as a function of spacecraft potential over the polar caps and in the lobes of the magnetosphere, regions where other experiments on Cluster have intrinsic limitations. Data from 2001 to 2006 reveal that the photoelectron characteristics of the Cluster spacecraft as well as the electric field probes vary with the solar cycle and solar activity. The consequences for plasma density measurements are addressed. Typical examples are presented to demonstrate the use of this technique in a polar cap/lobe plasma.