Akademska digitalna zbirka SLovenije - logo
E-viri
Recenzirano Odprti dostop
  • Highly efficient and tunabl...
    Lesne, E; Fu, Yu; Oyarzun, S; Rojas-Sánchez, J C; Vaz, D C; Naganuma, H; Sicoli, G; Attané, J-P; Jamet, M; Jacquet, E; George, J-M; Barthélémy, A; Jaffrès, H; Fert, A; Bibes, M; Vila, L

    Nature materials, 12/2016, Letnik: 15, Številka: 12
    Journal Article

    The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO /SrTiO to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.